Looking for Statistics and Data Science / Statistiek en Datawetenskap - 188 test answers and solutions? Browse our comprehensive collection of verified answers for Statistics and Data Science / Statistiek en Datawetenskap - 188 at emslearn.sun.ac.za.
Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!
‘n Onderdele winkel verkoop nuwe en gebruikte onderdele. Sestig persent van die onderdele is gebruikte onderdele. Vyf-en-sestig persent is gebruik of defektief. Indien vyf persent van die winkel se onderdele defektief is, watter persentasie is beide gebruik en defektief. / A part store sells both new and used parts. Sixty percent of the parts in stock are used. Sixty five percent are used or defective. If five percent of the store’s parts are defective, what percentage is both used and defective?
‘n Firma klassifiseer klante op twee maniere, volgens: / A firm classifies its customers in two ways according to:
(I) of die rekening agterstallig is en / whether the account is overdue and
(II) of die rekening nuut is (minder as twaalf maande) of oud. / whether the account is new (less than twelve months) or old.
‘n Analise van die firma se records verskaf ons van die volgende tabel van gesamentlike waarskynlikhede: / An analysis of the firm’s records provides the following table of joint probabilities:
| Agterstallig / Overdue | Nie agterstallig / Not overdue |
Nuut / New | 0.06 | 0.13 |
Oud / Old | 0.52 | 0.29 |
Een rekening word ewekansig geselekteer. / One account is randomly selected.
Indien die rekening nie agterstallig is nie, wat is die waarskynlikheid dat dit ‘n nuwe rekening is? / If the account is not overdue, what is the probability that it is new?
Veronderstel daar is 100 studente in u klas, waarvan tien linkshandig is. Twee studente word ewekansig gekies (sonder terugplasing). / Suppose there are 100 students in your class, of whom ten are left-handed. Two students are selected at random (without replacement).
Wat is die waarskynlikheid dat beide linkshandig is: / What is the probability that both are left-handed:
Die maandelikse verhuringskoste per vierkante meter vir kantoorruimte in 25 geboue in Durban se middestad (in rand) word in die volgende frekwensieverdeling gegee: / The monthly rental cost per square meter for office space in 25 buildings in Durban’s centre (in Rand) is given in the following frequency distribution:
Onderste grens / Lower Boundary | Boonste grens / Upper Boundary | Frekwensie / Frequency |
| 151 | 200 | 6 |
| 201 | 250 | 8 |
| 251 | 300 | 6 |
| 301 | 350 | 2 |
| 351 | 400 | 2 |
| 401 | 450 | 1 |
Die verdeling van die data is / The distribution of the data is
Die volgende totale word gegee vir ’n steekproef wat uit 105 waardes bestaan: / The following totals are given for a sample consisting of 105 values:
Bereken die gemiddeld. / Calculate the mean.
ʼn Sportwinkel eienaar het sy daaglikse omset vir 300 handelsdae aangeteken soos in die frekwensietabel hieronder gegee. / A sport shop owner recorded the daily turnover of his outlet for 300 trading days as shown in the frequency table below.
Daaglikse omset / Daily turnover | Aantal dae / Number of days |
(500; 750] | 15 |
(750; 1000] | 23 |
(1000; 1250] | 55 |
(1250; 1500] | 92 |
(1500; 1750] | 65 |
(1750; 2000] | 50 |
Wat is die minimum waarde wat die omset moet wees vir ʼn handelsdag om geklassifiseer te word as een van die 25% besigste dae? / What is the minimum turnover which will classify a trading day as one of the 25% busiest?
Beskou ʼn klokvormige verdeling met μ = 13.4 en σ² = 4.84. Die benaderde grense waarbinne ongeveer 95% van die waardes in die verdeling lê, is: / Consider a bell-shaped distribution with μ = 13.4 and σ² = 4.84. The approximate limits between which approximately 95% of the distribution lie are:
Stingel / Stem Blaar / Leaf
5 1 3 4 5
6 5 6 8 9 9
7 0 1 2 2 3 4 5 6 7 9
8 0 2 3 6 8 9
9 1 6 9 9
Skaal: / Scale: 5 1 ≡ 51
Die gemiddelde is gelyk aan: / The mean equals:
Die volgende totale word gegee vir ’n steekproef wat uit 75 waardes bestaan: / The following totals are given for a sample consisting of 75 values:
Bereken die standaardafwyking. / Calculate the standard deviation.
Gegee die volgende frekwensieverdeling vir: / Given the following frequency distribution for :
Klasgrense / Class limits | Frekwensie / Frequency |
(0;10] | 30 |
(10;20] | 35 |
(20;30] | 20 |
(30;40] | 10 |
(40;50] | 5 |
Totaal / Total | 100 |
Die akkuraatste benadering vir die gemiddelde is: / The most accurate approximation for the mean is: