logo

Crowdly

Browser

Add to Chrome

\mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den C ku...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

 \mathbb{r}(t) = (x(t), y(t), z(t)) \mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den  C C kurba baten gaineko lerro-integrala honela definitzen da:

 \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt} \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt}

non a, b \in\mathbb{R}a, b \in\mathbb{R} puntuak tt parametrizazioko aldagaiaren definizio-eremuaren mugak diren, eta  \overrightarrow{V} \overrightarrow{V} kurbako puntu guztietan jarraitua den bektore-eremu bat den. Integral honek,  \overrightarrow{V} \overrightarrow{V} -k, masa bat C C kurba zeharkatzean egituen duen lanaren balioa ematen digu eta ibilbidearen norabidearen menpekoa da.

0%
0%
More questions like this

Want instant access to all verified answers on egela.ehu.eus?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome