logo

Crowdly

\mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den C ku...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

 \mathbb{r}(t) = (x(t), y(t), z(t)) \mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den  C C kurba baten gaineko lerro-integrala honela definitzen da:

 \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt} \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt}

non a, b \in\mathbb{R}a, b \in\mathbb{R} puntuak tt parametrizazioko aldagaiaren definizio-eremuaren mugak diren, eta  \overrightarrow{V} \overrightarrow{V} kurbako puntu guztietan jarraitua den bektore-eremu bat den. Integral honek,  \overrightarrow{V} \overrightarrow{V} -k, masa bat C C kurba zeharkatzean egituen duen lanaren balioa ematen digu eta ibilbidearen norabidearen menpekoa da.

More questions like this

Want instant access to all verified answers on egela.ehu.eus?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!