Add to Chrome
✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
Задача на максимум у лінійному програмуванні має вигляд
f({{x}_{1}},{{x}_{2}},...,{{x}_{n}})={{c}_{1}}{{x}_{1}}+{{c}_{2}}{{x}_{2}}+...+{{c}_{n}}{{x}_{n}}\to \max
\left\{ \begin{matrix} a_{11}{x}_{1}+{a}_{12}{x}_{2}+...+{{a}_{1n}}{{x}_{n}}\le {{b}_{1}}, \\ {{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}+...+{{a}_{2n}}{{x}_{n}}\le {{b}_{2}}, \\ ..., \\ {{a}_{m1}}{{x}_{1}}+{{a}_{m2}}{{x}_{2}}+...+{{a}_{mn}}{{x}_{n}}\le {{b}_{m}}, \\\end{matrix} \right.
\left\{ \begin{matrix}
a_{11}{x}_{1}+{a}_{12}{x}_{2}+...+{{a}_{1n}}{{x}_{n}}\le {{b}_{1}}, \\
{{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}+...+{{a}_{2n}}{{x}_{n}}\le {{b}_{2}}, \\
..., \\
{{a}_{m1}}{{x}_{1}}+{{a}_{m2}}{{x}_{2}}+...+{{a}_{mn}}{{x}_{n}}\le {{b}_{m}}, \\
\end{matrix} \right.
\left\{ \begin{matrix} a_{11}{x}_{1}+{a}_{12}{x}_{2}+...+{{a}_{1n}}{{x}_{n}}\le {{b}_{1}}, \\ {{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}+...+{{a}_{2n}}{{x}_{n}}\le {{b}_{2}}, \\ ..., \\ {{a}_{m1}}{{x}_{1}\cdot x_2}+{{a}_{m2}}{{x}_{2}}+...+{{a}_{mn}}{{x}_{n}} \neq {{b}_{m}}, \\ \end{matrix} \right.
\left\{ \begin{matrix} a_{11}{x}_{1}+{a}_{12}{x}_{2}+...+{{a}_{1n}}{{x}_{n}}\le {{b}_{1}}, \\ {{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}+...+{{a}_{2n}}{{x}_{n}}\le {{b}_{2}}, \\ ..., \\ {{a}_{m1}}{{x}_{1}^2}+{{a}_{m2}}{{x}_{2}^2}+...+{{a}_{mn}}{{x}_{n}^2} \le {{b}_{m}}, \\ \end{matrix} \right.
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!