Add to Chrome
✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
Choose from the following statements those that are true.
If \lim_{x\rightarrow a^+}f(x) \neq \lim_{x\rightarrow a^-}f(x) then either f(a) = \lim_{x\rightarrow a^+}f(x) or f(a) = \lim_{x\rightarrow a^-}f(x) .
If \lim_{x\rightarrow a^+}f(x) = \lim_{x\rightarrow a^-}f(x) then \lim_{x\rightarrow a}f(x) = f(a).
If \lim_{x\rightarrow a}f(x) exists and is a real number then \lim_{x\rightarrow a^+}f(x) = \lim_{x\rightarrow a^-}f(x).
If \lim_{x\rightarrow a}f(x) exists then \lim_{x\rightarrow a}f(x) = f(a).
If \lim_{x\rightarrow a}f(x) exists and is a real number then \lim_{x\rightarrow a^+}f(x) = \lim_{x\rightarrow a^-}f(x) provided the domain of the function includes values slightly greater than and slightly less than a.
If \lim_{x\rightarrow a^+}f(x) \neq \lim_{x\rightarrow a^-}f(x) then f(a) is undefined.
\lim_{x\rightarrow a}f(x) = f(a) provided the function f is defined when x=a.
If \lim_{x\rightarrow a^+}f(x) = \lim_{x\rightarrow a^-}f(x) then \lim_{x\rightarrow a}f(x) exists and is equal to the limit found by the one sided limits.
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!