✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
Решить матричным методом систему
\left{ \begin{array}{ccc}3x-7y = -4\\\,\\15x +6y = 21\\ \end{array} \right
Пусть X= \left( \begin{array}{ccc} \,x\\ \ \\y\\ \end{array} \right). Тогда
1)X= \left( \begin{array}{ccc} \,\frac{1}{3}& \ -\frac{1}{7}\\ \ \\\frac{1}{15} & \;\;\frac{1}{6}\\ \end{array} \right) \cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);
2)X= \left( \begin{array}{ccc} \,\frac{6}{123}& \ -\frac{7}{123}\\ \ \\\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);
3)X=\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right) \cdot \left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{15}{123}\\ \ \\-\frac{7}{123} & \;\;\frac{3}{123}\\ \end{array} \right);
4)X=\left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{7}{123}\\ \ \\ -\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right).
Выберите один ответ: