logo

Crowdly

Browser

Add to Chrome

Решить матричным методом систему \left{ \begin{array}{ccc}3x-7y = -4\\\,\\15...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

Решить матричным методом систему

 \left{ \begin{array}{ccc}3x-7y = -4\\\,\\15x +6y = 21\\ \end{array} \right \left{ \begin{array}{ccc}3x-7y = -4\\\,\\15x +6y = 21\\ \end{array} \right

Пусть X= \left( \begin{array}{ccc} \,x\\ \ \\y\\ \end{array} \right)X= \left( \begin{array}{ccc} \,x\\ \ \\y\\ \end{array} \right). Тогда 

 1)X= \left( \begin{array}{ccc} \,\frac{1}{3}& \ -\frac{1}{7}\\ \ \\\frac{1}{15} & \;\;\frac{1}{6}\\ \end{array} \right) \cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);1)X= \left( \begin{array}{ccc} \,\frac{1}{3}& \ -\frac{1}{7}\\ \ \\\frac{1}{15} & \;\;\frac{1}{6}\\ \end{array} \right) \cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);             2)X= \left( \begin{array}{ccc} \,\frac{6}{123}& \ -\frac{7}{123}\\ \ \\\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);2)X= \left( \begin{array}{ccc} \,\frac{6}{123}& \ -\frac{7}{123}\\ \ \\\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right); 

3)X=\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right) \cdot \left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{15}{123}\\ \ \\-\frac{7}{123} & \;\;\frac{3}{123}\\ \end{array} \right);3)X=\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right) \cdot \left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{15}{123}\\ \ \\-\frac{7}{123} & \;\;\frac{3}{123}\\ \end{array} \right);        4)X=\left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{7}{123}\\ \ \\ -\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right).4)X=\left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{7}{123}\\ \ \\ -\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right).

Выберите один ответ:

0%
0%
0%
0%
More questions like this

Want instant access to all verified answers on education.vsuet.ru?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome