logo

Crowdly

Browser

Add to Chrome

Математика (ВМ)

Looking for Математика (ВМ) test answers and solutions? Browse our comprehensive collection of verified answers for Математика (ВМ) at education.vsuet.ru.

Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!

Вычислить вспомогательный определитель Δy системы:

 \left{ \begin{array}{ccc}3x + 10y = 6\\\,\\15x - 4y = 12\\ \end{array} \right \left{ \begin{array}{ccc}3x + 10y = 6\\\,\\15x - 4y = 12\\ \end{array} \right

View this question

Решить матричным методом систему

 \left{ \begin{array}{ccc}3x-7y = -4\\\,\\15x +6y = 21\\ \end{array} \right \left{ \begin{array}{ccc}3x-7y = -4\\\,\\15x +6y = 21\\ \end{array} \right

Пусть X= \left( \begin{array}{ccc} \,x\\ \ \\y\\ \end{array} \right)X= \left( \begin{array}{ccc} \,x\\ \ \\y\\ \end{array} \right). Тогда 

 1)X= \left( \begin{array}{ccc} \,\frac{1}{3}& \ -\frac{1}{7}\\ \ \\\frac{1}{15} & \;\;\frac{1}{6}\\ \end{array} \right) \cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);1)X= \left( \begin{array}{ccc} \,\frac{1}{3}& \ -\frac{1}{7}\\ \ \\\frac{1}{15} & \;\;\frac{1}{6}\\ \end{array} \right) \cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);             2)X= \left( \begin{array}{ccc} \,\frac{6}{123}& \ -\frac{7}{123}\\ \ \\\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right);2)X= \left( \begin{array}{ccc} \,\frac{6}{123}& \ -\frac{7}{123}\\ \ \\\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right); 

3)X=\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right) \cdot \left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{15}{123}\\ \ \\-\frac{7}{123} & \;\;\frac{3}{123}\\ \end{array} \right);3)X=\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right) \cdot \left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{15}{123}\\ \ \\-\frac{7}{123} & \;\;\frac{3}{123}\\ \end{array} \right);        4)X=\left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{7}{123}\\ \ \\ -\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right).4)X=\left( \begin{array}{ccc} \,\frac{6}{123}& \ \frac{7}{123}\\ \ \\ -\frac{15}{123} & \;\;\frac{3}{123}\\ \end{array} \right)\cdot\left( \begin{array}{ccc} -4\\ \\ \,\\ \\ 21\\ \end{array} \right).

Выберите один ответ:

0%
0%
0%
0%
View this question

Дана матрица

A= \left( \begin{array}{ccc} \,\, 2& \,-4&\,\,3\\ \\ \\ \,\, 8 & \,-15&\,\,10\\ \\ \\ \,\,-4& \, 8&\,-5\end{array} \right)A= \left( \begin{array}{ccc} \,\, 2& \,-4&\,\,3\\ \\ \\ \,\, 8 & \,-15&\,\,10\\ \\ \\ \,\,-4& \, 8&\,-5\end{array} \right) 

Найти обратную матрицу A−1.

1)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,-2&\,2,5\\ \\ \\ \,\,0&\,1&\,2\\ \ \\ \,5& \,-4&\,1\end{array} \right);1)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,-2&\,2,5\\ \\ \\ \,\,0&\,1&\,2\\ \ \\ \,5& \,-4&\,1\end{array} \right);  2)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,2&\,2,5\\ \\ \\ \,\,0&\,1&\,2\\ \ \\ \,2& \,0&\,1\end{array} \right);2)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,2&\,2,5\\ \\ \\ \,\,0&\,1&\,2\\ \ \\ \,2& \,0&\,1\end{array} \right); 

3)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,2&\,2,5\\ \\ \\ \,\,0&\,1&\,4\\ \ \\ \,2& \,0&\,1\end{array} \right);3)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,2&\,2,5\\ \\ \\ \,\,0&\,1&\,4\\ \ \\ \,2& \,0&\,1\end{array} \right); 4)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,0&\,-2\\ \\ \\ \,\,-2&\,1&\,2\\ \ \\ \,2,5& \,0&\,1\end{array} \right).4)A^{-1}=\left( \begin{array}{ccc} \,\,-2,5& \,\,0&\,-2\\ \\ \\ \,\,-2&\,1&\,2\\ \ \\ \,2,5& \,0&\,1\end{array} \right).  

 

Выберите один ответ:

0%
0%
0%
100%
View this question

Найти алгебраическое дополнение A12 элемента a12  определителя

2-48
-436
2-23

 

 

 

View this question

Вычислить определитель

1-310
-444
1-25

 

 

 

View this question

Даны матрицы

\small{A= \left( \begin{array}{ccc} \,4 & \ -2 \\ \ \\ -8 & \ 9\\ \end{array} \right)}\small{A= \left( \begin{array}{ccc} \,4 & \ -2 \\ \ \\ -8 & \ 9\\ \end{array} \right)} и \small{B= \left( \begin{array}{ccc} 9 & \ -6 \\ \ \\ 4 & \ 10\\ \end{array} \right)}\small{B= \left( \begin{array}{ccc} 9 & \ -6 \\ \ \\ 4 & \ 10\\ \end{array} \right)}

Найти матрицу \small{C=B\cdot A}\small{C=B\cdot A}

\small{1)C= \left( \begin{array}{ccc} \,36 & \ 12 \\ \ \\ -32 & \ 90\\ \end{array} \right)};\small{1)C= \left( \begin{array}{ccc} \,36 & \ 12 \\ \ \\ -32 & \ 90\\ \end{array} \right)};  \small{2)C= \left( \begin{array}{ccc} \,28 & \ -44 \\ \ \\ -36 & \ 138\\ \end{array} \right)};\small{2)C= \left( \begin{array}{ccc} \,28 & \ -44 \\ \ \\ -36 & \ 138\\ \end{array} \right)}; \small{3)C= \left( \begin{array}{ccc} \,4 & \ -64 \\ \ \\ -36 & \ 102\\ \end{array} \right)};\small{3)C= \left( \begin{array}{ccc} \,4 & \ -64 \\ \ \\ -36 & \ 102\\ \end{array} \right)};  \small{4)C= \left( \begin{array}{ccc} \,84 & \ -72 \\ \ \\ -64 & \ 82\\ \end{array} \right)};\small{4)C= \left( \begin{array}{ccc} \,84 & \ -72 \\ \ \\ -64 & \ 82\\ \end{array} \right)};  \small{5)C= \left( \begin{array}{ccc} \,48 & \ -4 \\ \ \\ -126 & \ 58\\ \end{array} \right)}.\small{5)C= \left( \begin{array}{ccc} \,48 & \ -4 \\ \ \\ -126 & \ 58\\ \end{array} \right)}. 

Выберите один ответ:

0%
0%
0%
100%
0%
View this question

Даны матрицы

\small{A= \left( \begin{array}{ccc} \,6 & \ 0 \\ \ \\ -5 & \ 5\\ \end{array} \right)}\small{A= \left( \begin{array}{ccc} \,6 & \ 0 \\ \ \\ -5 & \ 5\\ \end{array} \right)} и \small{B= \left( \begin{array}{ccc} -8 & \ 5 \\ \ \\ 8 & \ -1\\ \end{array} \right)}\small{B= \left( \begin{array}{ccc} -8 & \ 5 \\ \ \\ 8 & \ -1\\ \end{array} \right)}

Найти матрицу \small{C=8B^T-7A}\small{C=8B^T-7A}

 \small{1)\,C= \left( \begin{array}{ccc} \,-106 & \ 64 \\ \ \\ 5 & \ -43\\ \end{array} \right);}\small{1)\,C= \left( \begin{array}{ccc} \,-106 & \ 64 \\ \ \\ 5 & \ -43\\ \end{array} \right);}  \small{2)\,C= \left( \begin{array}{ccc} \,-22 & \ 64 \\ \ \\ 5 & \ 27\\ \end{array} \right);}\small{2)\,C= \left( \begin{array}{ccc} \,-22 & \ 64 \\ \ \\ 5 & \ 27\\ \end{array} \right);}    \small{3)\,C= \left( \begin{array}{ccc} \,-106 & \ 64 \\ \ \\ 75 & \ -43\\ \end{array} \right);}\small{3)\,C= \left( \begin{array}{ccc} \,-106 & \ 64 \\ \ \\ 75 & \ -43\\ \end{array} \right);}   \small{4)\,C= \left( \begin{array}{ccc} \,-22 & \ -64 \\ \ \\ 29 & \ 27\\ \end{array} \right);}\small{4)\,C= \left( \begin{array}{ccc} \,-22 & \ -64 \\ \ \\ 29 & \ 27\\ \end{array} \right);}  \small{5)\,C= \left( \begin{array}{ccc} \,-106 & \ -64 \\ \ \\ 99 & \ -43\\ \end{array} \right)}.\small{5)\,C= \left( \begin{array}{ccc} \,-106 & \ -64 \\ \ \\ 99 & \ -43\\ \end{array} \right)}.  

Выберите один ответ:

0%
0%
0%
0%
100%
View this question

Want instant access to all verified answers on education.vsuet.ru?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome