Looking for ENGG252 (DB225) Engineering Fluid Mechanics test answers and solutions? Browse our comprehensive collection of verified answers for ENGG252 (DB225) Engineering Fluid Mechanics at moodle.uowplatform.edu.au.
Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!
Water enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 kW and the shaft power output from the turbine is 1 kW. Bothe the pump and turbine are 90 percent efficient. If the elevation and velocity of the water remain constant throughout the flow and the irreversible head loss is 1 m, the pressure of water at the turbine exit is
A 75-m-high water body that is open to the atmosphere is available. Water is run through a turbine at a rate of 200 L/s at the bottom of the water body. The pressure difference across the turbine is
A pump is used to increase the pressure of water from 100 kPa to 900 kPa at a rate of 160 L/min. If the shaft power input to the pump is 3 kW, the efficiency of the pump is
The pressure of water is increased from 100 kPa to 900 kPa by a pump. The mechanical energy increase of water is
Water at 120 kPa (gage) is flowing in a horizontal pipe at a velocity of 1.15 m/s. The pipe makes a 90° angle at the exit and the water exits the pipe vertically into the air. The maximum height the water jet can rise is
Water at 80 kPa (gage) enters a horizontal pipe at a velocity of 1.7 m/s. The pipe makes a 90° angle at the exit and the water exits the pipe vertically into the air. Take the correction factor to be 1. If the irreversible head loss between the inlet and exit of the pipe is 3 m, the height the water jet can rise is
The motor of a pump consumes 1.05 hp of electricity. The pump increases the pressure of water from 120 kPa to 1100 kPa at a rate of 35 L/min. If the motor efficiency is 94 percent, the pump efficiency is
The static and stagnation pressures of a fluid in a pipe are measured by a piezometer and a pitot tube to be 200 kPa and 210 kPa, respectively. If the density of the fluid is 550 kg/m
Air at 100 kPa and 20°C flows in a 12-cm-diameter pipe at a rate of 9.5 kg/min. The velocity of air in the pipe is