logo

Crowdly

Browser

Add to Chrome

Which of the following statements is/are true? (i) 35\int_0^\infty \frac{x^{...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

Which of the following statements is/are true?

(i) 35\int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=6\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx35\int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=6\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx

(ii) 2\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=3\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx2\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=3\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx

(iii) \int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=\frac{1}{2} and \int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=\frac{2}{35}\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=\frac{1}{2} and \int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=\frac{2}{35}

(iv) \beta(\frac{1}{2},\frac{1}{2})=\sqrt{\pi}\beta(\frac{1}{2},\frac{1}{2})=\sqrt{\pi} 

0%
0%
0%
0%
0%
0%
0%
0%
More questions like this

Want instant access to all verified answers on online.uom.lk?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome