logo

Crowdly

Browser

Add to Chrome

In24-S1-MA1014 - Mathematics

Looking for In24-S1-MA1014 - Mathematics test answers and solutions? Browse our comprehensive collection of verified answers for In24-S1-MA1014 - Mathematics at online.uom.lk.

Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!

Which of the following statements is/are true?

(i) 35\int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=6\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx35\int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=6\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx

(ii) 2\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=3\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx2\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=3\int_0^\infty \frac{x^{5}}{(x^{3} + 1)^{4}} \, dx

(iii) \int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=\frac{1}{2} and \int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=\frac{2}{35}\int_1^\infty \frac{(\ln{x})^{2}}{x(\ln{x} + 1)^{5}} \, dx=\frac{1}{2} and \int_0^\infty \frac{x^{4}}{(x + 1)^{8}} \, dx=\frac{2}{35}

(iv) \beta(\frac{1}{2},\frac{1}{2})=\sqrt{\pi}\beta(\frac{1}{2},\frac{1}{2})=\sqrt{\pi} 

0%
0%
0%
0%
0%
0%
0%
0%
View this question

Consider the function f(z)=4y+xif(z)=4y+xi where z=x+iyz=x+iy and x,y\in\mathbb{R}x,y\in\mathbb{R}. Which of the following statements is/are false? 

0%
0%
0%
0%
0%
0%
View this question

Which of the following statements are true?

(i) \int_0^\infty x\sqrt{x} \ e^{-x^5} \, dx = \frac{\sqrt{\pi}}{5}\int_0^\infty x\sqrt{x} \ e^{-x^5} \, dx = \frac{\sqrt{\pi}}{5}

(ii) \int_0^\infty 4^{-3x^2} \, dx = \sqrt{\frac{\pi}{3 \ \ln 4}}\int_0^\infty 4^{-3x^2} \, dx = \sqrt{\frac{\pi}{3 \ \ln 4}}

(iii) It is given that the nn - dimensional volume of an nn - dimensional ball of radius RR is V_n(R) = \frac{\pi^{n/2} R^n}{\Gamma\left(\frac{n}{2} + 1\right)}V_n(R) = \frac{\pi^{n/2} R^n}{\Gamma\left(\frac{n}{2} + 1\right)} then V_4(1) = \frac{\pi^{2}}{2}V_4(1) = \frac{\pi^{2}}{2} and V_5(1) = \frac{8\pi^{2}}{15}V_5(1) = \frac{8\pi^{2}}{15}

(iv) Area under the curve defined by f(x) = x^{-1/2}(1 - x)^{-1/2}f(x) = x^{-1/2}(1 - x)^{-1/2} on the interval [0, 1][0, 1] is given by \int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx\int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx then \int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx = \frac{\pi}{2} \int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx = \frac{\pi}{2}

View this question

Consider the function f(z)=\overline{z}f(z)=\overline{z}. Which of the following statements is/are true?

0%
0%
0%
0%
0%
0%
View this question

Which of the following statements are true?

(i) The integral \int_0^\infty x^{-3/2} e^{-x} \, dx\int_0^\infty x^{-3/2} e^{-x} \, dx converges, whereas the integral \int_0^\infty x^{-1} e^{-x} \, dx\int_0^\infty x^{-1} e^{-x} \, dx diverges.

(ii) The integral \int_0^1 x^{-3/2}(1 - x)^{-1/2} \, dx\int_0^1 x^{-3/2}(1 - x)^{-1/2} \, dx converges, whereas the integral \int_0^1 x^{-1}(1 - x)^{-1}\, dx\int_0^1 x^{-1}(1 - x)^{-1}\, dx diverges.

(iii) The integral \int_0^\infty x^{-1/2} e^{-x} \, dx\int_0^\infty x^{-1/2} e^{-x} \, dx converges, whereas the integral \int_0^\infty x^{-1} e^{-x} \, dx\int_0^\infty x^{-1} e^{-x} \, dx diverges.

(iv) The integral \int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx\int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx converges, whereas the integral \int_0^1 x^{-1}(1 - x)^{-1}\, dx\int_0^1 x^{-1}(1 - x)^{-1}\, dx diverges.

(v) The integral \int_0^\infty x^{-3/2} e^{-x} = \Gamma(-\frac{1}{2}) \int_0^\infty x^{-3/2} e^{-x} = \Gamma(-\frac{1}{2})

View this question

Consider the sequence of functions u_n(x)=\sqrt{x^2+\frac{1}{n}}u_n(x)=\sqrt{x^2+\frac{1}{n}} and suppose u_n(x)u_n(x) converges to u(x)u(x) for all x\in\mathbb{R}x\in\mathbb{R}. Which of the following are True?

0%
0%
0%
0%
0%
0%
0%
View this question

When \lim_{n\to\infty} u_n\lim_{n\to\infty} u_n is not existing for a bounded sequance u_nu_n, the closest thing we can do is to get Limit Superior, \limsup_{n\to\infty}u_n=\lim_{n\to\infty}\left(\sup_{m\geq n} u_m\right )\limsup_{n\to\infty}u_n=\lim_{n\to\infty}\left(\sup_{m\geq n} u_m\right ) and Limit Inferior, \liminf_{n\to\infty}u_n=\lim_{n\to\infty}\left(\inf_{m\geq n} u_m\right )\liminf_{n\to\infty}u_n=\lim_{n\to\infty}\left(\inf_{m\geq n} u_m\right ). Which of the following are possibly True?

33%
33%
33%
33%
33%
0%
33%
View this question

Let f(z)=z^3-if(z)=z^3-i and g(z)=(z+i)^2+1g(z)=(z+i)^2+1. Which of the following expressions is/are true? 

View this question

Let f(z) be a function from \mathbb{C}\mathbb{C} to \mathbb{C}\mathbb{C} and z_0\in \mathbb{C}z_0\in \mathbb{C}. Which of the following statements is/are true? 

0%
0%
0%
0%
0%
0%
0%
View this question

What is True about the radius of convergence RR of a power series  \sum_{n=1}^{\infty} a_n (x-a)^n \sum_{n=1}^{\infty} a_n (x-a)^n? Power series always converges for x=ax=a, so let x\neq ax\neq a. Taylor series T_{\infty}(x,a)T_{\infty}(x,a) for a function ff is a power series with a_n=\frac{f^{(n)}(a)}{n!}a_n=\frac{f^{(n)}(a)}{n!}.

33%
0%
0%
33%
33%
33%
0%
33%
33%
33%
View this question

Want instant access to all verified answers on online.uom.lk?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome