Add to Chrome
✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
В чому полягає кореневий критерій для аналізу системиавтоматичного регулювання на стійкість?
В чому полягає кореневий критерій для аналізу системи
автоматичного регулювання на стійкість?
визначається виглядом годографа вектора АФХрозімкненої системи WРС(ίω) = WО (ίω) WР (ίω) і замкнена САР буде стійкою, якщо годограф вектора її АФХ в розімкненомустані WРС(ίω) не охоплює точки з координатами U = -1; i V = 0
визначається виглядом годографа вектора АФХ
розімкненої системи W
(ίω) = W
(ίω)
і замкнена САР буде стійкою, якщо годограф вектора її АФХ в розімкненому
стані W
визначається виглядом годографа вектора характеристичногорівняння замкненої системи WЗС (ίω) і замкнена САР буде стійкою,якщо годограф вектора її характеристичного рівняння n-го ступеня WЗС(ίω) зі зростанням ω від 0 до ∞проходить послідовно через n квадрантів комплексної площини, обертаючись в додатномунапрямку:
визначається виглядом годографа вектора характеристичного
рівняння замкненої системи W
(ίω) і замкнена САР буде стійкою,
якщо годограф вектора її характеристичного рівняння
(ίω) зі зростанням ω від 0 до ∞
проходить послідовно через
квадрантів комплексної площини, обертаючись в додатному
напрямку:
аналізуються коефіцієнти характеристичного рівняннясистеми:
аналізуються коефіцієнти характеристичного рівняння
системи:
аn pn + аn-1 pn-1 +………+ а1 p + аn = 0, і САРбудуть стійкими, якщо в характеристичних рівняннях 1-го порядку - ɑ1і ɑ0 ˃ 0; 2-го порядку - ɑ2, ɑ1 іɑ0 ˃ 0 ; 3-го порядку - ɑ3 , ɑ 2, ɑ1 і ɑ0 ˃ 0 і ɑ1 * ɑ2 ˃ ɑ 3 * ɑ0
+
………+
0, і САР
будуть стійкими, якщо в характеристичних рівняннях 1-го порядку - ɑ
і ɑ
0; 2-го порядку
- ɑ
і
ɑ
3
визначається знаком дійсної частини коренів характеристичного рівняння САР; системаавтоматичного регулювання буде стійкою, якщо корені її характеристичногорівняння, записаного в операторній формі аn pn + аn-1 pn-1 + ………+ а1 p + аn = 0 є дійсними від’ємними або комплексними звід’ємною дійсною частиною, тобторозташовані в лівій півплощині коренів (заштрихованої на координатній площині): P1,2 = - αk або P1,2 = - αk ± ίβk
визначається знаком
дійсної частини коренів характеристичного рівняння САР; с
истема
автоматичного регулювання буде стійкою, якщо корені її характеристичного
рівняння, записаного в операторній формі
0 є дійсними від’ємними або комплексними з
від’ємною дійсною частиною, тобто
розташовані в лівій півплощині коренів
(заштрихованої на координатній площині):
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!