Add to Chrome
✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
Jeśli u=\arccos v, to
v\in\mathbb{R} \wedge u\in(0,\pi)
u\in\langle-1,1\rangle \wedge v\in\langle-\frac{\pi}{2},\frac{\pi}{2}\rangle
v\in\langle-1,1\rangle \wedge u\in\langle 0,\pi\rangle
u\in\mathbb{R} \wedge v\in(0,\pi)
u\in\langle-1,1\rangle \wedge v\in(-\frac{\pi}{2},\frac{\pi}{2})
u\in\langle-1,1\rangle \wedge v\in\langle 0,\pi\rangle
v\in\mathbb{R} \wedge u\in(-\frac{\pi}{2},\frac{\pi}{2})
v\in\langle-1,1\rangle \wedge u\in\langle-\frac{\pi}{2},\frac{\pi}{2}\rangle
v\in\langle-1,1\rangle \wedge u\in(-\frac{\pi}{2},\frac{\pi}{2})
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!