logo

Crowdly

Browser

Add to Chrome

Which of the following statements are true? (i) The integral \int_0^\infty x...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

Which of the following statements are true?

(i) The integral \int_0^\infty x^{-3/2} e^{-x} \, dx\int_0^\infty x^{-3/2} e^{-x} \, dx converges, whereas the integral \int_0^\infty x^{-1} e^{-x} \, dx\int_0^\infty x^{-1} e^{-x} \, dx diverges.

(ii) The integral \int_0^1 x^{-3/2}(1 - x)^{-1/2} \, dx\int_0^1 x^{-3/2}(1 - x)^{-1/2} \, dx converges, whereas the integral \int_0^1 x^{-1}(1 - x)^{-1}\, dx\int_0^1 x^{-1}(1 - x)^{-1}\, dx diverges.

(iii) The integral \int_0^\infty x^{-1/2} e^{-x} \, dx\int_0^\infty x^{-1/2} e^{-x} \, dx converges, whereas the integral \int_0^\infty x^{-1} e^{-x} \, dx\int_0^\infty x^{-1} e^{-x} \, dx diverges.

(iv) The integral \int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx\int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx converges, whereas the integral \int_0^1 x^{-1}(1 - x)^{-1}\, dx\int_0^1 x^{-1}(1 - x)^{-1}\, dx diverges.

(v) The integral \int_0^\infty x^{-3/2} e^{-x} = \Gamma(-\frac{1}{2}) \int_0^\infty x^{-3/2} e^{-x} = \Gamma(-\frac{1}{2})

More questions like this

Want instant access to all verified answers on online.uom.lk?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome