Looking for Безпека інформаційних систем test answers and solutions? Browse our comprehensive collection of verified answers for Безпека інформаційних систем at do.ipo.kpi.ua.
Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!
Модель порушника інформаційної безпеки.
Порушник намагається вплинути на СІД А так, щоби його легальні (валідні) Повідомлення
стали недосяжні для СІД В. Приклади: DoS; DDoS атака.
*СІД – суб’єкт інформаційної діяльності
Це є порушення ...
Модель порушника інформаційної безпеки.
Порушник намагається використати легальні засоби і Протоколи мережі щоби під’єднатися до потоку чужих даних.
Це є сценарій атаки ...
Модель порушника інформаційної безпеки.
Порушник намагається отримати легальний доступ до LAN A ч/з консоль (Хост, End-device) і досягти
на Серверах LAN В інформаційних ресурсів, які йому не призначені Політиками безпеки підприємства В.
Це є сценарій атаки ...
Модель порушника інформаційної безпеки.
Порушник намагається ознайомитися зі змістом повідомлення, яке йому не призначено.
*СІД – суб’єкт інформаційної діяльності
Це є порушення ...
Модель порушника інформаційної безпеки.
Порушник, маючи легальний доступ до LAN A, ч/з консоль (Хост, End-device) досягає на Серверах
LAN A інформаційних ресурсів, які йому не призначені Політиками безпеки підприємства.
Це сценарій атаки ...
Дано адитивну групу G(р)+ = G(827)+ . Знайдіть порядок елемента u = 192 тієї ж групи.
Найменша кількість jm = n копій елемента w із поля GF(p), які треба помножити самих на себе, щоби їх добуток досяг значення «1» має назву «мультиплікативний порядок n» елемента w.
Дано елементи α та β скінченного поля GF( p ). Користуючись методикою із лекції Тема 4 та наданим там же Exel-калькулятором, визначити первісний елемент w серед заданих α =15 та β =19, де p = 773.
Якщо довільно обрати елемент u, то будь-який елемент α адитивної групи G(p)+ можна отримати s-кратним додаванням елемента u самого до себе, за правилами групової операції додавання.
Дано елементи α та β скінченного поля GF( p ). Користуючись методикою із лекції Тема 4 та наданим там же Exel-калькулятором, визначити первісний елемент w серед заданих α =12 та β =21, де p = 773.
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!