logo

Crowdly

Browser

Add to Chrome

Dynamique des solides

Looking for Dynamique des solides test answers and solutions? Browse our comprehensive collection of verified answers for Dynamique des solides at elearning.univ-eiffel.fr.

Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & B \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & B \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} Wx \\ Wy \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} Wx \\ Wy \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{z_1} \overrightarrow{z_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Soit la matrice symétrique  A A et le vecteur  v v définis comme suit :

 A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 5 & -2 \\ 0 & -2 & 5 \end{bmatrix} A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 5 & -2 \\ 0 & -2 & 5 \end{bmatrix} ,  v = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} v = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}

Calculez le produit  Av Av et sélectionnez la réponse correcte :

View this question

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & -F & 0 \\ -F & B & -D \\ 0 & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & -F & 0 \\ -F & B & -D \\ 0 & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{x_1} \overrightarrow{x_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} Wx \\ 0 \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} Wx \\ 0 \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{z_1} \overrightarrow{z_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Soit l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) définis comme suit dans le repère du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & B \end{bmatrix} I[G,1] = \begin{bmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & B \end{bmatrix} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} \dot{\alpha} \\ 0 \\ \dot{\gamma} \end{bmatrix} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} \dot{\alpha} \\ 0 \\ \dot{\gamma} \end{bmatrix}

Calculez le produit  I[G,1] \cdot \overrightarrow{\Omega} (1/0) I[G,1] \cdot \overrightarrow{\Omega} (1/0) et sélectionnez la réponse correcte :

View this question

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ 0 \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{y_1} \overrightarrow{y_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ 0 \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ 0 \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{x_1} \overrightarrow{x_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Soient l'opérateur d'inertie  I[G,1] I[G,1] au point  G G du solide  1 1 et le vecteur taux de rotation  \overrightarrow{\Omega} ( 1/0) \overrightarrow{\Omega} ( 1/0) du solide 1 par rapport au référentiel galiléen 0. Tous deux définis comme suit dans le repère  ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) ( \overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} ) du solide  1 1 :

 I[G,1] = \begin{bmatrix} A & -F & 0 \\ -F & B & -D \\ 0 & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} I[G,1] = \begin{bmatrix} A & -F & 0 \\ -F & B & -D \\ 0 & -D & C \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} ,  \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )} \overrightarrow{\Omega} (1/0) = \begin{bmatrix} 0 \\ Wy \\ Wz \end{bmatrix}_{(\overrightarrow{x_1} , \overrightarrow{y_1} , \overrightarrow{z_1} )}

Calculez la coordonnée suivant  \overrightarrow{y_1} \overrightarrow{y_1} du vecteur  \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0) \overrightarrow{\sigma} ( G ,1/0 )= I[G,1] \cdot \overrightarrow{\Omega} (1/0)  

View this question

Calculer le produit vectoriel suivant :

 \overrightarrow{k} \wedge \overrightarrow{y} = \overrightarrow{k} \wedge \overrightarrow{y} =

0%
0%
0%
0%
0%
0%
View this question

Calculer le produit vectoriel suivant :

 \overrightarrow{i} \wedge \overrightarrow{x} = \overrightarrow{i} \wedge \overrightarrow{x} =

View this question

Want instant access to all verified answers on elearning.univ-eiffel.fr?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!

Browser

Add to Chrome